Economics Lecture #4

Nonlinear Regression Functions II

Outline

- 1.Standard errors for predicted effects, nonlinear specifications
- 2.Logarithms: gasoline demand elasticity (cross-section data)
- 3.Class size test score example:
 - a. Tabulation of regression results
 - b.Logarithmic specifications

Computing standard errors of predicted effect in nonlinear regression functions: cubic example

 $\widehat{CourseEval} = 4.037 - .043Beauty - .0858Beauty^2 + .1276Beauty$ (.035) (.065) (.039) (.041)

Predicted change in *CourseEval* for a change in *Beauty* from 1 to 1.5:

$$\Delta \widehat{CourseEval} = 4.037 - .043 \times 1.5 - .0858 \times 1.5^{2} + .1276 \times 1.5^{3}$$
$$- (4.037 - .043 \times 1 - .0858 \times 1^{2} + .1276 \times 1^{3})$$
$$= 0.17$$

Predicted "effects" for different values of *X*:

Change in <i>Beauty</i>	$\Delta \widehat{CourseEval}$	Std. Error
from -1.5 to -1.0	0.39	0.10
from 0 to 0.5	-0.03	0.03
from 1.0 to 1.5	0.17	0.07

What is the effect of a change from 2.0 to 2.5? (*caution!*)

STATA: computing the SE of this predicted change

The easiest approach is to use the lincom command:

This standard error can also be computed by printing out the estimated variance matrix of the parameters. Right after running the regression execute the STATA command:

. matrix list e(V); This command prints out the variance matrix

symmetric	e(V)[4,4]			
	btystdave	bty2	bty3	_cons
btystdave	.00424225			
bty2	.0005358	.00152125		
bty3	00230495	00059672	.00166406	
_cons	.0001839	00087789	.00005669	.00119767

Now use the "variance of sums" formula: $\widehat{var}(0.5\hat{\beta}_{1}+1.25\hat{\beta}_{2}+2.375\hat{\beta}_{3})$ $= 0.5^{2} \times .00424 + 1.25^{2} \times .00152 + 2.375^{2} \times .00166$ $+ 2 \times .5 \times 1.25 \times .00054 + 2 \times .5 \times 2.375 \times (-.00231)$ $+ 2 \times 1.25 \times 2.375 \times (-.00059) = .004476$ so $SE(0.5\hat{\beta}_{1}+1.25\hat{\beta}_{2}+2.375\hat{\beta}_{3}) = \sqrt{.004476} = .0669$

Gasoline demand elasticity using logarithms (PS1 data set)

- . gen lpumpprice = ln(pumpprice)
- . gen lgaspc = ln(gaspc)

Linear regression

. reg lgaspc lpumpprice popdensity unemployment if (statename~="DC"), r

Number of	obs =	47
F(3,	43) =	16.04
Prob > F	=	0.0000
R-squared	=	0.4121
Root MSE	=	.07985

 gaspc	Coef.	Robust Std. Err.	t	P> t 	[95% Conf.	Interval]
lpumpprice	-1.770943	.3375229	-5.25	0.000	-2.451622	-1.090263
popdensity	0001178	.0000376	-3.13	0.003	0001937	0000419
unemployment	0090777	.0127185	-0.71	0.479	0347271	.0165716
_cons	15.83669	1.811951	8.74	0.000	12.18254	19.49083

Recall PS1 estimate was -1.71 using linear demand function with elasticity evaluated at the mean – so, in this application, results are similar if we use log-log or linear demand function

Tabular Presentation of Regression Results (& new example)

Issue: effect of class size on elementary student achievement. Data: n = 420 California school districts, 1998-99 Test score: district average 5th grade Stanford Achievement Test

 $\overline{TestScore} = 698.9 - 2.28STR, R^2 = 0.049, SER = 18.58$ (10.4) (0.52)

Some California data scatterplots

(a) Percentage of English language learners

(b) Percentage qualifying for reduced price lunch

(c) Percentage qualifying for income assistance

TABLE 7.1 Results of Regressions of Test Scores on the Student–Teacher Ratio and Student Characteristic Control Variables Using California Elementary School Districts

Dependent variable: average test score in the district.

Regressor	(1)	(2)	(3)	(4)	(5)
Student–teacher ratio (X_1)	-2.28^{**} (0.52)	-1.10^{*} (0.43)	-1.00^{**} (0.27)	-1.31^{**} (0.34)	-1.01^{**} (0.27)
Percent English learners (X_2)		-0.650^{**} (0.031)	-0.122^{**} (0.033)	-0.488^{**} (0.030)	-0.130^{**} (0.036)
Percent eligible for subsidized lunch (X_3)			-0.547^{**} (0.024)		-0.529^{**} (0.038)
Percent on public income assistance (X_4)				-0.790^{**} (0.068)	0.048 (0.059)
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)
Summary Statistics					
SER	18.58	14.46	9.08	11.65	9.08
\overline{R}^2	0.049	0.424	0.773	0.626	0.773
n	420	420	420	420	420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% significance level using a two-sided test.

Logarithms: California data - TestScore vs. ln(Income)

Implementation:

First define the new regressor, ln(*Income*)

• The model is now linear in ln(*Income*), so the linear-log model can be estimated by OLS:

 $\widehat{TestScore} = 557.8 + 36.42 \times \ln(Income_i)$ (3.8) (1.40)

so a 1% increase in *Income* is associated with an increase in *TestScore* of 0.36 points on the test.

- Standard errors, confidence intervals, R^2 all the usual tools of regression apply here.
- How does this compare to the cubic model?

Test scores: linear-log and cubic regression functions

Example: ln(TestScore) vs. ln(Income)

 $ln(TestScore) = 6.336 + 0.0554 \times ln(Income_i)$ (0.006) (0.0021)

A 1% increase in *Income* is associated with an increase of .0554% in *TestScore* (*Income* up by a factor of 1.01, *TestScore* up by a factor of 1.000554)

The log-linear and log-log specifications:

- Note vertical axis
- Neither log-linear nor log-log seems to fit as well as the cubic or linear-log although you can't tell this formally here because the dependent variables are different