Economics
Lecture #4

Nonlinear Regression Functions I1

Outline
1.Standard errors for predicted effects, nonlinear specifications

2.Logarithms: gasoline demand elasticity (cross-section data)
3.Class size — test score example:

a. Tabulation of regression results

b.Logarithmic specifications
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Computing standard errors of predicted effect in nonlinear regression

functions: cubic example

CourseEval = 4.037 — .043Beauty — .0858Beauty? + .1276Beauty
(.035) (.065) (.039) (.041)

Predicted change in CourseEval for a change in Beauty from
1 to1.5:

ACourseEval = 4.037 — .043x1.5 — .0858x1.52 + .1276x1.53

—(4.037 — .043x1 — .0858x 12+ .1276x1°)
=0.17
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Linear and nonlinear regression functions
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Predicted “effects” for different values of X:

Change in Beauty ACourseEval Std. Error
from-1.51t0-1.0 0.39 0.10
from 0 to 0.5 -0.03 0.03
from1.0to 1.5 0.17 0.07

What is the effect of a change from 2.0 to 2.5? (caution!)
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STATA: computing the SE of this predicted change

The easiest approach 1s to use the lincom command:

. scaal = (1.5 - (L); Note: sca means “create this scalar”
. sca bl =(.5*1.5 - (DOD*Q);
. scacl = (.5*1.5)*{1.5 - (D*(DO*);

lincom al*btystdave+bl*bty2+cl*bty3;

( 1) .5 btystdave + 1.25 bty2 + 2.375 bty3 = 0

courseeval~-n | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ o
O | .1741214 -0669055 2.60 0.010 .0426424 -3056004
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This standard error can also be computed by printing out the estimated
variance matrix of the parameters. Right after running the regression
execute the STATA command:

. matrix list e(V); This command prints out the variance matrix

symmetric e(V)[4,4]

btystdave bty2 bty3 _cons
btystdave .00424225
bty?2 -0005358 -00152125
bty3 -.00230495 -.00059672 -00166406
_cons -0001839 -.00087789 -00005669 -00119767

Now use the “variance of sums” formula:
var(0.53 +1.2553, +2.3753,)
=0.5%x.00424 + 1.25%x.00152 + 2.375%*%x.00166

+ 2x.5%1.25%.00054 + 2x.5%2.375% (-.00231)
+ 2x1.25%2.375% (-.00059) =.004476

so  SE(0.58 +1.258,+2.375/3,) = /.004476 = .0669

5-6



Gasoline demand elasticity using logarithms (PS1 data set)

- gen lpumpprice = In(pumpprice)
- gen lgaspc = In(gaspc)

reg lgaspc Ipumpprice popdensity unemployment i1f (statename~="DC"), r

Linear regression Number of obs = 47
FC 3, 43) = 16.04
Prob > F = 0.0000
R-squared = 0.4121
Root MSE = .07985

| Robust
Igaspc | Coef. Std. Err. t P> t] [95% Conf. Interval]
_____________ e
Ipumpprice | -1.770943 .3375229 -5.25 0.000 -2.451622  -1.090263
popdensity | -.0001178 -0000376 -3.13 0.003 -.0001937 -.0000419
unemployment | -.0090777 .0127185 -0.71 0.479 -.0347271 .0165716
_cons | 15.83669 1.811951 8.74 0.000 12.18254 19.49083

Recall PS1 estimate was -1.71 using linear demand function with elasticity
evaluated at the mean — so, in this application, results are similar if we use
log-log or linear demand function
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Tabular Presentation of Regression Results (& new example)
Issue: effect of class size on elementary student achievement.

Data: n =420 California school districts, 1998-99
Test score: district average 5™ grade Stanford Achievement Test

Test score
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TestScore = 698.9 — 2.28STR, R* = 0.049, SER = 18.58
(10.4) (0.52)




Some California data scatterplots
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TABLE 7.1

Results of Regressions of Test Scores on the Student-Teacher Ratio and Student

Characteristic Control Variables Using California Elementary School Districts

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)
Student—teacher ratio (X;) —2 28k —1.10% —1.00%* b P51 B —1 01
(0.52) (0.43) (0.27) (0.34) (0.27)
Percent English learners (.X,) —0.650** —(), 122 %% —0.488%* — 0. 130**
(0.031) (0.033) (0.030) (0.036)
Percent eligible for subsidized lunch (X5) —0.547%% ={),.529%%
(0.024) (0.038)
Percent on public income assistance (X,) —0.790%%* 0.048
(0.068) (0.059)
Intercept pYE Y 686.0%** 700.2%% 698.(+> 700.4%*
(10.4) (8.7) (5.6) (6.9) (5.5)
Summary Statistics
SER 18.58 14.46 9.08 11.65 9.08
i 0.049 0.424 0.773 0.626 0.773
n 420 420 420 420 420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Standard errors
are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% signifi-

cance level using a two-sided test.
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Logarithms: California data - TestScore vs. In(Income)
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Implementation:
First define the new regressor, In(Income)

e The model 1s now linear in In(Income), so the linear-log model can be
estimated by OLS:

TestScore = 557.8 + 36.42 xIn(Incomei)
(3.8) (1.40)

so a 1% increase in Income 1s associated with an increase in TestScore
of 0.36 points on the test.

e Standard errors, confidence intervals, R? — all the usual tools of
regression apply here.

® How does this compare to the cubic model?
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Test scores: linear-log and cubic regression functions
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Example: In( TestScore) vs. In( Income)

In(TestScore) = 6.336 + 0.0554 x In(Income;)
(0.006) (0.0021)

A 1% increase in Income is associated with an increase of .0554% 1n
TestScore (Income up by a factor of 1.01, TestScore up by a factor of
1.000554)
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The log-linear and log-log specifications:

In(Test score)

6.60 —
Log-linear regression
6.55
6.50 Log-log regression
6.45
6.40 * I. | | | | |

District income
(thousands of dollars)

e Note vertical axis

e Neither log-linear nor log-log seems to fit as well as the cubic or
linear-log — although you can’t tell this formally here because the
dependent variables are different
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