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Economics 
Lecture #4 

 

Nonlinear Regression Functions II 

Outline 
1.Standard errors for predicted effects, nonlinear specifications
2.Logarithms: gasoline demand elasticity (cross-section data)
3.Class size – test score example:

a. Tabulation of regression results
b.Logarithmic specifications
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Computing standard errors of predicted effect in nonlinear regression 
functions: cubic example 
 
CourseEval  = 4.037 – .043Beauty – .0858Beauty2 + .1276Beauty 

(.035)   (.065)            (.039)     (.041) 
 
Predicted change in CourseEval for a change in Beauty from  
1 to 1.5: 
 

CourseEval  = 4.037 – .0431.5 – .08581.52 + .12761.53 

     – (4.037 – .0431 – .085812 + .127613) 
    = 0.17 
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Predicted “effects” for different values of X: 
 

Change in Beauty CourseEval  Std. Error 
from -1.5 to -1.0 0.39 0.10 

from 0 to 0.5 -0.03 0.03 
from 1.0 to 1.5 0.17 0.07 

 
What is the effect of a change from 2.0 to 2.5?  (caution!) 
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STATA: computing the SE of this predicted change 
 
The easiest approach is to use the   lincom   command: 

 
. sca a1 = (1.5) - (1);        Note: sca means “create this scalar” 
. sca b1 = (1.5)*(1.5) - (1)*(1); 
. sca c1 = (1.5)*(1.5)*(1.5) - (1)*(1)*(1); 
. lincom a1*btystdave+b1*bty2+c1*bty3; 
 
 ( 1)  .5 btystdave + 1.25 bty2 + 2.375 bty3 = 0 
 
------------------------------------------------------------------------------ 
courseeval~n |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |   .1741214   .0669055     2.60   0.010     .0426424    .3056004 
------------------------------------------------------------------------------ 
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This standard error can also be computed by printing out the estimated 
variance matrix of the parameters.  Right after running the regression 
execute the STATA command: 

. matrix list e(V);   This command prints out the variance matrix 
 
symmetric e(V)[4,4] 
            btystdave        bty2        bty3       _cons 
btystdave   .00424225 
     bty2    .0005358   .00152125 
     bty3  -.00230495  -.00059672   .00166406 
    _cons    .0001839  -.00087789   .00005669   .00119767 
 

Now use the “variance of sums” formula: 


1 2 3
ˆ ˆ ˆvar(0.5 1.25 2.375 )     

    = 0.52.00424 + 1.252.00152 + 2.3752.00166 
    + 2.51.25.00054 + 2.52.375 (-.00231)  

+ 21.252.375 (-.00059)  = .004476 
so  1 2 3

ˆ ˆ ˆ(0.5 1.25 2.375 )SE      = .004476 .0669   
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Gasoline demand elasticity using logarithms (PS1 data set) 
 

. gen lpumpprice = ln(pumpprice) 

. gen lgaspc = ln(gaspc) 
 
. reg lgaspc lpumpprice popdensity unemployment if (statename~="DC"), r 
 
Linear regression                                      Number of obs =      47 
                                                       F(  3,    43) =   16.04 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4121 
                                                       Root MSE      =  .07985 
 
------------------------------------------------------------------------------ 
             |               Robust 
      lgaspc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  lpumpprice |  -1.770943   .3375229    -5.25   0.000    -2.451622   -1.090263 
  popdensity |  -.0001178   .0000376    -3.13   0.003    -.0001937   -.0000419 
unemployment |  -.0090777   .0127185    -0.71   0.479    -.0347271    .0165716 
       _cons |   15.83669   1.811951     8.74   0.000     12.18254    19.49083 
------------------------------------------------------------------------------ 

 
Recall PS1 estimate was -1.71 using linear demand function with elasticity 
evaluated at the mean – so, in this application, results are similar if we use 
log-log or linear demand function  
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Tabular Presentation of Regression Results (& new example) 
Issue: effect of class size on elementary student achievement. 
Data:  n = 420 California school districts, 1998-99 
Test score: district average 5th grade Stanford Achievement Test 

 
TestScore = 698.9 – 2.28STR, R2 = 0.049, SER = 18.58 
                  (10.4)   (0.52)  
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Some California data scatterplots 
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Logarithms:  California data - TestScore vs. ln(Income) 
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Implementation: 
First define the new regressor, ln(Income) 
 The model is now linear in ln(Income), so the linear-log model can be 

estimated by OLS: 
 
TestScore = 557.8 + 36.42´ln(Incomei) 

 (3.8)    (1.40)  
 

so a 1% increase in Income is associated with an increase in TestScore 
of 0.36 points on the test. 

 Standard errors, confidence intervals, R2 – all the usual tools of 
regression apply here. 

 How does this compare to the cubic model? 
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Test scores: linear-log and cubic regression functions 
 



 5-14

Example: ln( TestScore) vs. ln( Income) 
 
ln( )TestScore  = 6.336 + 0.0554´ln(Incomei) 

   (0.006)  (0.0021)  
 

A 1% increase in Income is associated with an increase of .0554% in 
TestScore (Income up by a factor of 1.01, TestScore up by a factor of 
1.000554) 
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The log-linear and log-log specifications: 

 
 Note vertical axis 
 Neither log-linear nor log-log seems to fit as well as the cubic or 

linear-log – although you can’t tell this formally here because the 
dependent variables are different  


