LECTURE 1

Statistics Review II Linear Regression Review I

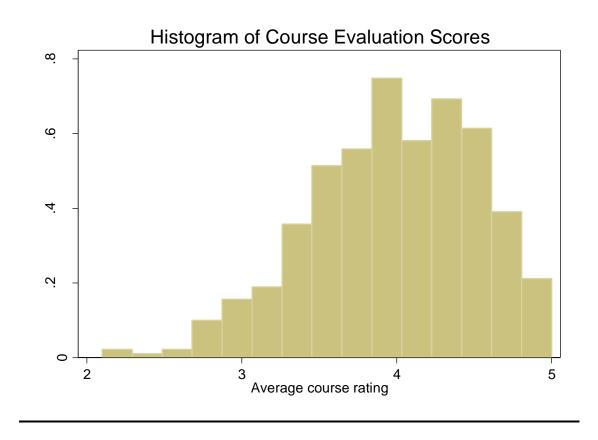
<u>Outline</u>

- 1. Statistics review (empirical example & finish)
- 2.Regression with one regressor
 - a. Estimation: continuous regressor, discrete regressor
 - b. Hypothesis tests and confidence intervals
 - c. Heteroskedasticity, homoskedasticity, and HR standard errors
- 3.Omitted variable bias

Statistics Review: Empirical Example using STATA

Data set: U.T. Teaching evaluations

n = 463 courses at U.T. Austin, academic years 2000-2002 (Source: Hamermesh and Parker (2005))



Empirical questions

Are course evaluation scores the same on average for male and female instructors?

Let Δ = the population difference in mean scores, men – women = $E(Y_m) - E(Y_w)$.

We are interested in:

- 1. Estimating Δ by the sample difference, $\hat{\Delta} = \overline{Y}_m \overline{Y}_w$
- 2.Can we reject the hypothesis that male and female instructors have the same scores on average, i.e. that $\Delta = 0$?
- 3. Finding a 95% confidence interval for Δ

<u>STATA output – *courseevaluation* by sex of instructor</u>

Blue means you type this in

. summarize courseevaluation if(female==0)

Variable	Obs	Mean	Std. Dev.	Min	Max
courseeval~n	 268	4.06903	 .5566518	2.1	5

. summarize courseevaluation if(female==1)

Variable	Obs	Mean	Std. Dev.	Min	Max
courseeval~n			.5388026	2.3	4.9

Question 1: Who has better evaluations – male or female instructors? What is the estimated difference $(\hat{\Delta})$ in evaluations?

Estimated difference =
$$\hat{\Delta} = \overline{Y}_m - \overline{Y}_w = 4.069 - 3.901 = 0.168$$

Question 2: Can we reject the hypothesis that male and female instructors have the same scores on average?

To conduct this hypothesis test, compute the *t*-statistic testing the hypothesis that $\Delta = 0$:

$$t \text{ (testing } \Delta=0) = \frac{\overline{Y}_w - \overline{Y}_m}{SE(\overline{Y}_w - \overline{Y}_m)}$$

We need to compute the standard error of $\hat{\Delta}$, $SE(\hat{\Delta})$:

$$SE(\overline{Y}_m - \overline{Y}_w) = \sqrt{\frac{s_m^2 + s_w^2}{n_m + n_w}}$$

. summarize courseevaluation if(female==0)

Variable	Obs	Mean	Std. Dev.	Min	Max
courseeval~n	, 268	4.06903	.5566518	2.1	5

. summarize courseevaluation if(female==1)

Variable	<u> </u>	Obs	Mean	Std. Dev.	Min	Max
courseeval~n	+ 	195	3.901026	.5388026	2.3	4.9

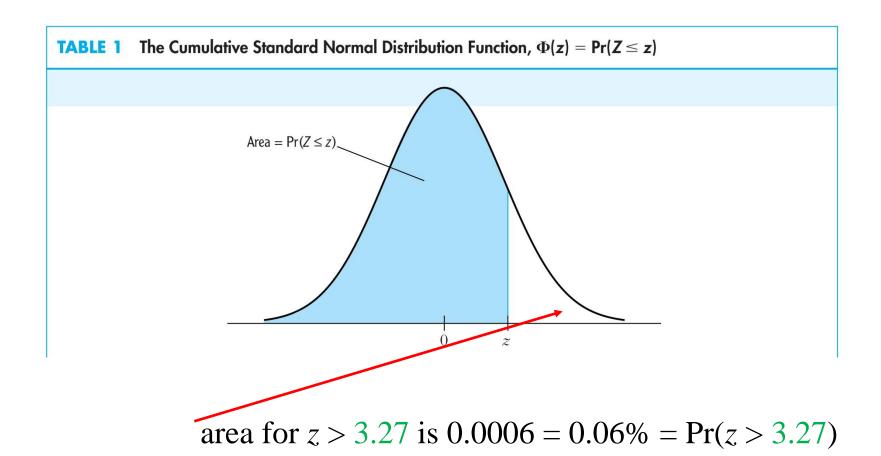
$$SE(\overline{Y}_m - \overline{Y}_w) = \sqrt{\frac{s_m^2 + s_w^2}{n_m + n_w}} = \sqrt{\frac{0.5567^2}{268} + \frac{0.5388^2}{195}} = 0.0514$$

$$t \text{ (testing } \Delta=0) = \frac{\overline{Y}_w - \overline{Y}_m}{SE(\overline{Y}_w - \overline{Y}_m)} = 0.168/0.0514 = 3.27$$

Two methods to evaluate this *t*-statistic:

- a) compare it to 1.96
- b) compute the *p*-value:

$$p$$
-value = $Pr(|z| > 3.27) = 0.0011 = 0.11\%$



$$p$$
-value = $Pr(|z| > 3.27) = 2 \times Pr(z > 3.27)$
= $2 \times 0.06\% = 0.12\%$

(different from 0.11% due to rounding)

Question 3: What is the 95% confidence interval for this difference?

95% confidence interval =
$$\hat{\Delta} \pm 1.96 \times SE(\hat{\Delta})$$

$$\hat{\Delta} \pm 1.96 \times SE(\hat{\Delta}) = 0.168 \pm 1.96 \times 0.0514 = (0.067, 0.269)$$

These calculations, done using ttest in STATA:

. ttest courseevaluation, by (female) unequal;

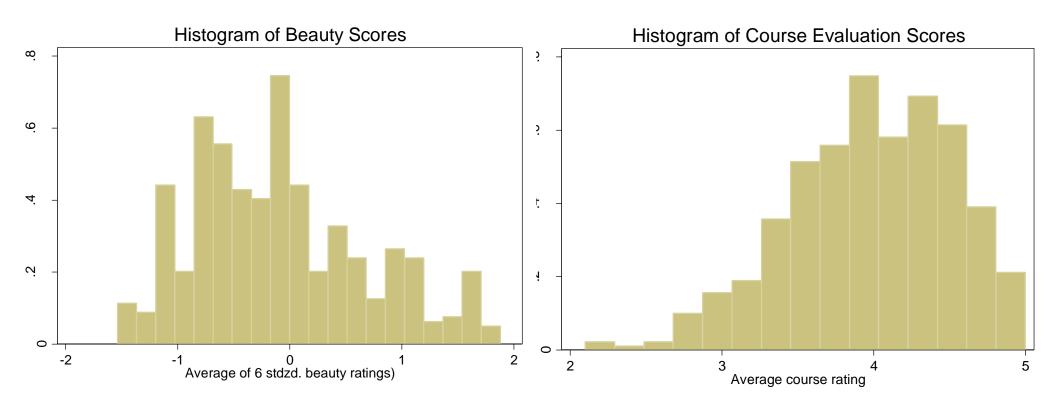
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	-	. Interval]
0 1	268 195	4.06903 3.901026	.0340029	.5566518 .5388026	4.002082 3.824927	4.135978 3.977125
combined	463	3.998272	.0257868	.5548656	3.947598	4.048946
diff	 	.1680042	.0514292		.0669175	.2690909

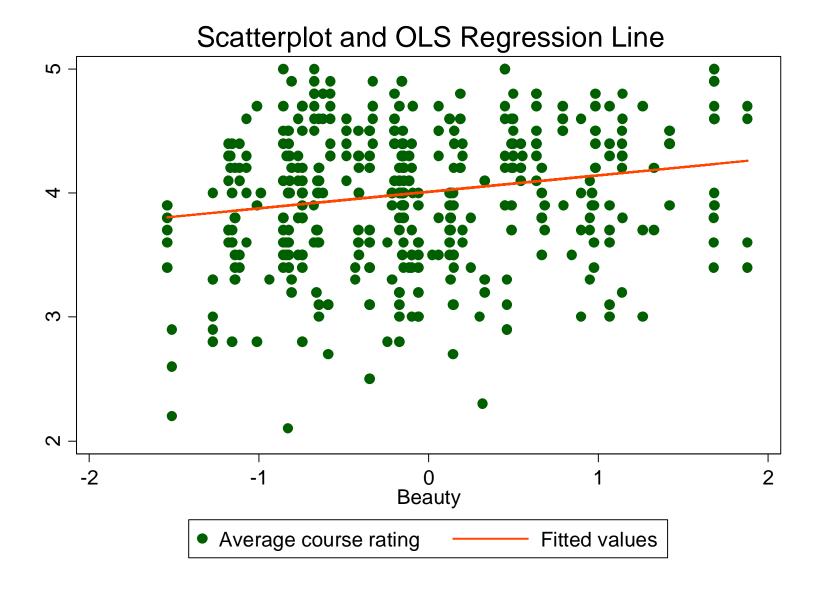
Ho: diff = 0 Satterthwaite's degrees of freedom = 425.756

Regression with a single regressor

Is instructor attractiveness related to course evaluations?



Course evaluations and beauty scores:



Homoskedastic or heteroskedastic?

. reg courseevaluation btystdave

Source	SS	df		MS		Number of obs	=	463
+						F(1, 461)	=	17.08
Model	5.08300724	1	5.08	300724		Prob > F	=	0.0000
Residual	137.155613	461	.297	517599		R-squared	=	0.0357
+						Adj R-squared	=	0.0336
Total	142.23862	462	.307	875801		Root MSE	=	.54545
courseeval~n		Std.		t	P> t	[95% Conf.		_
btystdave	.1330014	.0321	<mark>775</mark>	4.13	0.000	.0697687	• •	1962342
_cons	4.010023	.0255	082	157.21 	0.000	3.959896 	4	.060149

. reg courseevaluation btystdave, robust

Linear regression	on				Number of obs F(1, 461) Prob > F R-squared Root MSE	
courseeval~n	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
btystdave _cons	.1330014 4.010023	.0323189 .0253299	4.12 158.31	0.000	.0694908 3.960246	.1965121 4.059799

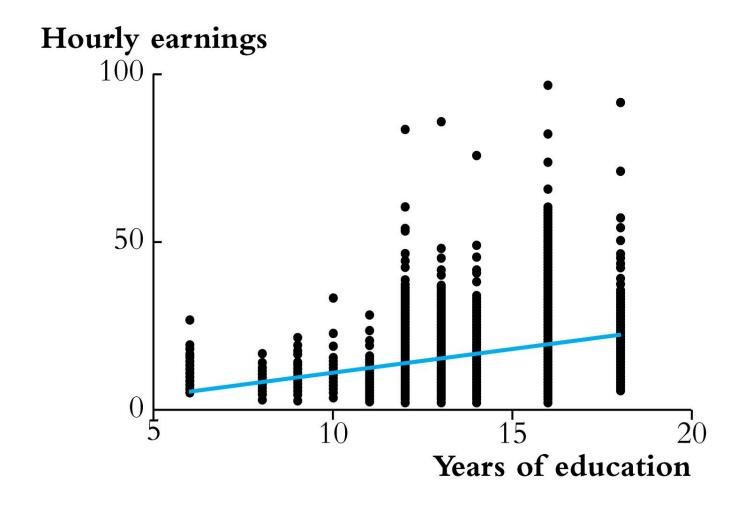
. reg courseevaluation female

Source	l ss	df	MS		Number of obs		463
Model Residual	+	1 461	3.18587533 .301632852		<pre>F(1, 461) Prob > F R-squared Adj R-squared</pre>	=	10.56 0.0012 0.0224 0.0203
Total	142.23862		.307875801		Root MSE		.54921
courseeval~n	Coef.	Std. E		P> t	[95% Conf.	In	terval]
female _cons	1680042 4.06903	<mark>. 05169</mark> . 03354	-3.25	0.001	2695905 4.003103		.066418 .134957

. reg courseevaluation female, r

Linear regress	sion				Number of obs	=	463
					F(1, 461)	=	10.67
					Prob > F	=	0.0012
					R-squared	=	0.0224
					Root MSE	=	.54921
I		Robust					
courseeval~n	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
female	1680042	.0514241	-3.27	0.001	2690588		0669496
_cons	4.06903	.034013	119.63	0.000	4.00219		4.13587

Average hourly earnings vs. years of education (data source: Current Population Survey):



Homoskedastic or heteroskedastic?

Omitted Variable Bias

- In multiple regression, β_1 is the effect of X_1 holding other X's constant.
- The main reason to include additional X's is if they co-vary with X_1 in which case they would be confounding factors if they are omitted
- The bias in the OLS estimator that occurs as a result of an omitted factor is called *omitted variable* bias.

For OVB to occur, the omitted factor "Z" must satisfy both:

1.Z is a determinant of Y (i.e. Z is part of u); and

2.Z is correlated with X (i.e. $corr(Z,X) \neq 0$)

- The best solution to OVB is including Z if it is available.
- Or, it might be possible to include a "control" variable that controls for the effect of Z, if Z is not available (much more on this later)

OVB example: Beauty and onecredit

. reg courseevaluation btystdave, r

Linear regress	sion	,			Number of obs = 46 F(1, 461) = 16.9 Prob > F = 0.000 R-squared = 0.035 Root MSE = .5454	0
	 	Robust				_
					[95% Conf. Interval]
btystdave	.1330014	.0323189	4.12	0.000	.0694908 .196512	1
_cons	4.010023	.0253299	158.31	0.000	3.960246 4.05979	9
. reg courseev Linear regress	-	stdave onecr	edit, r		Number of obs = 46 F(2, 460) = 28.4 Prob > F = 0.000 R-squared = 0.099 Root MSE = .5277	7 0 3
						<u> </u>
!		Robust				
courseeval~n		Std. Err.	t 	P> t	[95% Conf. Interval]
btystdave	.1480829				.08558 .210585	
onecredit	. 5985639	.0909013	6.58	0.000	.4199307 .777197	1
cons	3.97645	.0255452	155.66	0.000	3.92625 4.02664	9

- . * (ii) are beauty and onecredit correlated?
- . corr btystdave onecredit
 (obs=463)

```
| btyst~ve onecre~t
------btystdave | 1.0000
onecredit | -0.0847 1.0000
```

. reg btystdave onecredit, r
Linear regression

Number of obs = 463 F(1, 461) = 6.08 Prob > F = 0.0140 R-squared = 0.0072 Root MSE = .78667

 btystdave	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
onecredit	2847549	.1154962	-2.47	0.014	5117193	0577906
_cons	0717435	.0382323	-1.88	0.061	1468747	.0033877

Omitted variable bias formula

Suppose there is a single omitted variable *Z*:

$$E\hat{\beta}_1 = \beta_1 + \left(\frac{\sigma_u}{\sigma_X}\right)\rho_{Xu}$$

where $\rho_{Xu} = \operatorname{corr}(X, u)$.

- If an omitted factor Z is **both**:
 - (1) a determinant of Y (that is, it is contained in u); and
 - (2) correlated with X,

then $\rho_{Xu} \neq 0$ and the OLS estimator $\hat{\beta}_1$ is biased.

- If the data are from an ideal randomized controlled experiment, then E(u|X) = 0, $\rho_{Xu} = 0$, and there is no omitted variable bias.
- If $\rho_{Xu} \neq 0$, then $E(u|X) \neq 0$, so OLS is biased, that is, $E(\hat{\beta}_1) \neq \beta_1$.

Digression: derivation of the OV bias formula

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$
 (formula for OLS estimator).

Now
$$Y_i - \overline{Y} = \beta_1(X_i - \overline{X}) + (u_i - \overline{u})$$
, so

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})[\beta_{1}(X_{i} - \overline{X}) + (u_{i} - \overline{u})]}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

or

$$\hat{\beta}_{1} - \beta_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})(u_{i} - \bar{u})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

When n is large,

$$\hat{\beta}_{1} - \beta_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})(u_{i} - \overline{u})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$\xrightarrow{p} \frac{\text{cov}(X_{i}, u_{i})}{\text{var}(X_{i})} = \frac{\sigma_{Xu}}{\sigma_{X}^{2}} \text{ ("\xrightarrow{p}" means large-n limit)}$$

$$= \left(\frac{\sigma_{u}}{\sigma_{X}}\right) \times \left(\frac{\sigma_{Xu}}{\sigma_{X}\sigma_{u}}\right) = \left(\frac{\sigma_{u}}{\sigma_{X}}\right) \rho_{Xu},$$

where $\rho_{Xu} = \text{corr}(X, u)$. Rearranging the final expression yields,

$$\hat{eta}_1 = eta_1 + \left(rac{oldsymbol{\sigma}_u}{oldsymbol{\sigma}_X}
ight) oldsymbol{
ho}_{Xu}.$$

Technical note: this is a limit for large *n*.